DPP - 4 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93
Video Solution on YouTube:- https://youtu.be/OIriAKSU7iM

Written Solution on Website:-

Q 1. Figure shows three circular arcs, each of radius R and total charge as indicated. The net electric potential at the centre of curvature is:

(a) $\frac{Q}{2 \pi \varepsilon_{0} R}$
(b) $\frac{Q}{4 \pi \varepsilon_{0} R}$
(c) $\frac{2 Q}{\pi \varepsilon_{0} R}$
(d) $\frac{Q}{\pi \varepsilon_{0} R}$

Q 2. A, B and C are three points in a uniform electric field. The electric potential is:

(a) maximum at B
(b) maximum at C
(c) same at all the three points A, B and C
(d) maximum at A

Q 3. In a region the potential is represented by $V(x, y, z)=6 x-8 x y-8 y+6 y z$, where V is in volts and x, y, z, are in meters. Theelectric force experienced by a charge of 2 coulomb situated at point $(1,1,1)$ is:
(a) $6 \sqrt{5} \mathrm{~N}$
(b) 30 N
(c) 24 N
(d) $4 \sqrt{35} \mathrm{~N}$

Q 4. Figure below shows two equipotential lines in xy-plane for an electric field. The scales are marked. Electric field in the space between these equipotential lines are respectively

(a) $+100 i-200 j \mathrm{~V} / \mathrm{m}$
(b) $-100 i+200 j \mathrm{~V} / \mathrm{m}$
(c) $+200 \mathrm{i}+100 \mathrm{j} \mathrm{V} / \mathrm{m}$
(d) $-200 \mathrm{i}-100 \mathrm{j} \mathrm{V} / \mathrm{m}$

Q 5. The equation of an equipotential line in an electric field is $y=2 x$, then the electric field strength vector at $(1,2)$ may be -
(a) $4 \mathrm{i}+3 \mathrm{j}$
(b) $4 i+8 j$
(c) $8 \mathrm{i}+4 \mathrm{j}$
(d) $-8 i+4 j$

Q 6. A uniform electric field of $400 \mathrm{~V} / \mathrm{m}$ is directed at 450 above the x-axis as shown in figure. The potential difference $V_{A}-V_{B}$ is given by-

(a) 0 V
(b) 4 V
(c) 6.4 V
(d) 2.8 V

Q 7. The potential field depends on x and y coordinates as $V=\left(x^{2}-y^{2}\right)$. Corresponding electric field lines in $x-y$ plane as shown in Fig -

(a)

(b)

(d)

Q 8. The potential field of an electric field $\vec{E}=(y \hat{\imath}+x \hat{\jmath})$ is
(a) $V=-x y+$ constant
(b) $V=-(x+y)+$ constant
(c) $V=-\left(x^{2}+y^{2}\right)+$ constant
(d) $V=$ constant

Q 9. A nonconducting ring of radius 0.5 m carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$ distributed nonuniformly on its circumference, producing an electric field \vec{E} everywhere in space. The value of the line integral $\int_{l=\infty}^{l=0}-\vec{E} \cdot \overrightarrow{d l}(l=0$ being the centre of the ring) in volts is
(a) +2
(b) -1
(c) -2
(d) 0

Q 10. Two points are at distances a and $b(a<b)$ from a long string of charge per unit length λ. The potential difference between the points is proportional to
(a) $\frac{b}{a}$
(b) $\frac{b^{2}}{a^{2}}$
(c) $\sqrt{\frac{b}{a}}$
(d) $\ln (b / a)$

Q 11. On the axis of uniformly charged ring of radius R magnitude of rate of change of potential is maximum at
(a) Centre of ring
(b) Distance .5 R from centre of ring
(c) Distance .7 R from centre of ring
(d) Distance R from ring

Q 12. A conducting rod of length L rotates about its one end with angular velocity ω Potential difference between A and B is $\{\mathrm{m} \& \mathrm{e}=$ mass and charge on electron)

(a) $\frac{m \omega^{2} l^{2}}{e}$
(b) $\frac{3 m \omega^{2} l^{2}}{4 e}$
(c) $\frac{3 m \omega^{2} l^{2}}{8 e}$
(d) zero

Q 13. In a uniform electric field, the potential of origin is V and $\mathrm{V} / 2$ at each of the points ($\mathrm{a}, 0,0$), $(0, \mathrm{~b}, 0),(0,0, \mathrm{c})$. The potential at (a, b, c) will be
(a) $\mathrm{V} / 2$
(b) $-3 \mathrm{~V} / 2$
(c) $-\mathrm{V} / 2$
(d) -V

Answer Key

Q. 1 a	Q. 2 a	Q. 3 d	Q. 4 b	Q. 5 d
Q. 6 d	Q. 7 a	Q. 8 a	Q. 9 a	Q. 10 d
Q. 11 c	Q. 12 c	Q. 13 c		

